DIGITAL CONTROLLER WITH DEFROST AND FANS MANAGEMENT
XR03CX

1 GENERAL WARNINGS

1.1 PLEASE READ BEFORE USING THIS MANUAL

- This manual is part of the product and should be kept near the instrument for easy and quick reference.
- The instrument shall not be used for purposes different from those described hereunder. It cannot be used as a safety device.
- Check the application limits before proceeding.
- Dixell Srl reserves the right to change the composition of its products, even without notice, ensuring the same and unchanged functionality.

1.2 SAFETY PRECAUTIONS

- Check the supply voltage is correct before connecting the instrument.
- Do not expose to water or moisture: use the controller only within the operating limits avoiding sudden temperature changes with high atmospheric humidity to prevent formation of condensation.
- Warning: disconnect all electrical connections before any kind of maintenance.
- Ensure that the wires for probes, loads and the power supply are separated and far enough from each other, without crossing or intertwining.
- In case of applications in industrial environments, the use of mains filters (our mod. FT1) in parallel with the device provides the setting of temperature, detected by the evaporator probe, and to managed the fan operation.

2 GENERAL DESCRIPTION

The XR03CX, format 32 x 74 x 60 mm, is microprocessor based controller, suitable for applications on medium or low temperature ventilated refrigerating units. It has 2 relay outputs to control compressor and fan. The device is also provided with 2 NTC probe inputs, the first one for temperature control and the second one to be located onto the evaporator, to control the defrost termination temperature and to manage the fan and it’s provided with a configurable digital input. With the HOTKEY it’s possible to program the instrument in a quick and easy way.

3 REGULATION

The regulation is performed according to the temperature measured by the thermostat probe with a positive differential from the set point: if the temperature increases and reaches set point plus differential the compressor is started and then turned off when the temperature reaches the set point value again.

In case of fault in the thermostat probe the start and stop of the compressor are timed through parameters "Cf" and "On".

4 DEFROST

Defrost is performed through a simple stop of the compressor.

Parameter "sD" is used to control the interval between defrost cycles, its maximum length by parameter Md and two defrost modes: timed or controlled by the evaporator’s probe.

At the end of defrost dripping time is started, its length is set in the dt parameter. With dt=0 the dripping time is disabled.

5 FANS

With F1 or F2 parameters it can be selected the fans functioning.

- F1 is used when SET > 0
- F1 is used when SET < 0
- F1 or F2 on OFF will switch ON and OFF with the compressor and not run during defrost
- F1 or F2 on OFF will run even if the compressor is off, and not run during defrost

After defrost, there is a timed fan delay allowing for drip time, set by means of the "Fd" parameter.

- F1 or F2 on OFF will switch ON with OFF with the compressor and run during defrost
- F1 or F2 on OFF will run continuously also during defrost.

An additional parameter "FS" provides the setting of temperature, detected by the evaporator probe, above which the fans are always OFF. This is used to make sure circulation of air only if his temperature is lower than set in "FS".

5.1.1 Cyclical activation of the fans with compressor off

When F1 or F2 on OFF (fans in parallel to the compressor), by means of the Fn and FF parameters the fans can carry out on and off cycles even if the compressor is switched off. When the compressor is stopped the fans go on working for the Fm time. With Fn=0 the fans remain always off, when the compressor is off.

5.2 FANS AND DIGITAL INPUT

When the digital input is configured as door switch (I=do), fans and compressor status depends on the dC parameter value:

- dC=0 – normal regulation;
- dC=FF – compressor OFF;
- dC=F2 – compressor and fans OFF.

When R15, the regulation restart with door open alarm.

6 FRONT PANEL COMMANDS

To display target set point, in programming mode it selects a parameter or confirms an operation.

KEYS COMBINATION

To lock or unlock the keyboard.

To enter in programming mode.

To return to room temperature display.

LED MODE SIGNIFICATO

- On Compressor enabled
- Flashing Anti-short cycle delay enabled (AC parameter)
- On Defrost in progress
- Flashing Defrosting in progress
- On Fans output enabled
- Flashing Fans delay after defrost
- C Flashing Programming mode
- F Flashing Programming mode

6.1 HOW TO SEE THE SET POINT

1. Push and immediately release the SET key, the set point will be showed;
2. Push and immediately release the SET key or wait about 5s to return to normal visualisation.

6.2 HOW TO CHANGE THE SETPOINT

1. Push the SET key for more than 2 seconds to change the Set point value;
2. The value of the set point will be showed and the “C” or “F” LED starts blinking;
3. To change the Set value push the or arrows.
4. To memorise the new set point value press the SET key again or wait 10s.

6.3 HOW TO START A MANUAL DEFROST

Push the DEF key for more than 2 seconds and a manual defrost will start.

6.4 HOW TO CHANGE A PARAMETER VALUE

To change the parameter's value operate as follows:

1. Enter the Programming mode by pressing the SET+ or keys for 3s ("C" or "F" LED starts blinking);
2. Select the required parameter. Press the SET key to display its value
3. Use or to change its value.
4. Press "SET" to store the new value and move to the following parameter.

To exit Press "SET+" or wait 15s without pressing a key.

NOTE: the set value is stored even when the procedure is exited by waiting the time-out to expire.

6.5 HIDDEN MENU

The hidden menu includes all the parameters of the instrument.

HOW TO ENTER THE HIDDEN MENU

1. Enter the Programming mode by pressing the SET- or keys for 3s ("C" or "F" LED starts blinking);
2. Released the keys, then push again the SET+ or keys for more than 7s. The L2 label will be displayed immediately followed from the H1 parameter.

NOW YOU ARE IN THE HIDDEN MENU.

3. Select the required parameter.
4. Press the SET key to display its value
5. Use or to change its value.
6. Press "SET" to store the new value and move to the following parameter.

To exit Press "SET+" or wait 15s without pressing a key.

NOTE1: if there is no parameter L1, after 3s the “NP” message is displayed. Keep the keys pushed till the L2 message is displayed.

NOTE2: the value is stored even when the procedure is exited by waiting the time-out to expire.

HOW TO MOVE A PARAMETER FROM THE HIDDEN MENU TO THE FIRST LEVEL AND VICEVERSA.

Each parameter present in the HIDDEN MENU can be removed or put into “THE FIRST LEVEL” (user level) by pressing SET+ or in HIDDEN MENU when a parameter is present in First Level the decimal point is on.
6.6 TO LOCK THE KEYBOARD

1. Keep pressed for more than 3s the φ and γ keys.
2. The "OF" message will be displayed and the keyboard will be locked. If a key is pressed more than 3s the "OFF" message will be displayed.

6.7 TO UNLOCK THE KEYBOARD

Keep pressed together for more than 3s the φ and γ keys till the "on" message will be displayed.

7 PARAMETERS

REGULATION

Hy Differential: (0.1°C / 25°C / 1°F / 45°F) Intervention differential for set point. Compressor Cut in SET point + differential (Hy). Compressor Cut Out is when the temperature reaches the set point.
LS Minimum Set Point: (±5°C/SET+6°F=SET). Sets the minimum value for the set point.
US Maximum Set Point: (SET-96°C/SET-99°F). Set the maximum value for set point.

First probe calibration: (+9.9/9.9°F / +17°F / +17°F) allows to adjust possible offset of the first probe.
P2 Evaporator probe presence: not present; y= the defrost stops by temperature.
P2 Second probe calibration: (+9.9/9.9°F / -17°F / +17°F) allows to adjust possible offset of the second probe.

Output activation delay at start up: (0÷9min) This function is enabled at the initial start-up of the instrument and inhibits any output activation for the period of time set in the parameter.

Anti-short cycle delay: (0÷50 min) minimum interval between the compressor stop and the following restart.

Cp Compressor ON time with faulty probe: (0÷99 min) time during which the compressor is active in case of faulty thermostat probe. With Cp0=compressor is always OFF.

Cn Compressor OFF time with faulty probe: (0÷99 min) time during which the compressor is OFF in case of faulty thermostat probe. With Cp0=compressor is always active.

DISPLAY

CF Measurement unit: °C = °F; rH = relative humidity. WARNING: When the measurement unit is changed the SET point and the values of the parameters Hy, US, Cc, Cc, α, AL, AU have to be checked and modified if necessary.

Resolution (only for °C): (°C)=integer between -9 and 9.9 1°F = integer

Ld Default display: (P1 = P2) P1= thermostat probe; P2= evaporator probe. SP=SET point (only XR04CX)
dy Display delay: (0÷15 min.) when the display is updated is displayed of 1 °C/1°F after this time.

DEFROST

def Defrost termination temperature: (-55°C / -47°F) if P2≤Y it sets the temperature measured by the evaporator probe, which causes the end of defrost.
do Set for fan regulation: (0÷50°C / -47°F÷99°F). See parameters F1 and F2
id Interval between defrost cycles: (0÷99 minutes) Determines the time interval between the beginning of two defrost cycles.
Md Maximum length for defrost: (0÷99 min. with o no defrost) when P2≥y (not probes) it sets the defrost duration, when p2≥y (defrost end based on temperature) it sets the maximum length for defrost.
dF Display during defrost: (c1 / c2 / Sp / F) rE real temperature; eF start defrost temperature; Sp= SET-POINT; dF= label dF.

FANS

F1 Fans operating mode with SET = do: (c1, c2, c3, oy) c1 in runs with the compressors, OFF during defrost; c2= continuous mode, OFF during defrost; c3= runs with the compressor, ON during defrost; c4= continuous mode, ON during defrost.
F2 Fans operating mode with SET = d: (c1, c2, c3, oy) c1 in runs with the compressors, OFF during defrost; c2= continuous mode, OFF during defrost; c3= runs with the compressor, ON during defrost; c4= continuous mode, ON during defrost.
F4 Fans delay after defrost: (0÷99 min) Interval between end of defrost and evaporator fans start.
F5 Fans stop temperature: (-55°C / -47°F / 99°F) setting of temperature, detected by evaporator probe, above which fans are always OFF.
F6 Fan ON time: (0÷15min) with F1 or F2 = On or Cc. (fan activated in parallel with compressor) it sets the defrost termination probe among the evaporator fins in the coldest place, where most ice is formed, far from heaters or from the warmest place during defrost, to prevent premature defrost termination.

ALARMS

AU Maximum temperature alarm: (AL=90°C/99°F) when this temperature is reached the alarm is enabled, after the “AD” delay time.
AL Minimum temperature alarm: (±5AU°C / ±5AU°F) when this temperature is reached the alarm is enabled, after the “AD” delay time.
Ad Temperature alarm delay: (0÷99 min) time interval between the detection of an alarm condition and alarm signaling.
AdA Exclusion of temperature alarm at startup: (0÷99 min) time interval between the detection of the temperature alarm condition after instrument power on and alarm signaling.

DIGITAL INPUT

IP Digital input polarity: (±) a a = activated by closing the contact; aL activated by opening the contact;
IF Digital input input configuration: (EA) = (IA) = (IA) = (EI) = (EI) = (EX) = (EX) external alarm: “EA” message is displayed: bA = serious alarm; “CA” message is displayed: bA = do not set; do = door switch function; dF = defrost activation; Aa = not used; Hc = version of the kind of action; En = ES d = set parameter value.
ID Digital input delay: (0÷99 min) with IF=EA or bA = delay between the detection of the external alarm condition and its signalling. With IF=EA it reduces the delay to activate the door open alarm.
Cm Compressor and fan status when open door: (no= OFF; a= normal; F= Fans OFF; cO = Compressor OFF, FC = Compressor and Fans OFF.
rF Regulation with door open: (n= no regulation if door is opened; y= when door is elapsed regulation restarts even if door open alarm is present.

OTHER

d1 Thermostat probe display (read only)
d2 Evaporator probe display (read only)
rL Software release
PI Parameter code table

8 DIGITAL INPUTS

The free voltage digital input is programmable in different configurations by the “HF” parameter.

8.1 DOOR SWITCH (IF=DO)

It signals the door status and the corresponding relay output status through the “dc” parameter: no = normal (any change); Fn = Fan OFF, FC = Compressor OFF, FC = Compressor and Fan OFF.

Since the door is opened, after the delay time set through parameter “df”, the door alarm is enabled, the display shows the message “dc” and the regulation restarts if r= y. The alarm stops as soon as the external digital input is disabled again. With the door open, the high and low temperature alarms are disabled.

8.2 EXTERNAL ALARM (IF=EL)

As soon as the digital input is activated the unit will wait for “df” time delay before signalling the “EA” alarm message. The outputs status doesn’t change. The alarm stops just after the digital input is deactivated.

8.3 SERIOUS ALARM (IF=BA)

When the digital input is activated, the unit will wait for “df” time delay before signalling the “CA” alarm message. The relay outputs are switched OFF. The alarm will stop as soon as the digital input is deactivated.

8.4 START DEFROST (IF=DF)

It starts a defrost if there are the right conditions. After the defrost is finished, the normal regulation will restart only if the digital input is disabled otherwise the instrument will wait until the "Md" safety time is expired.

8.5 INVERSION OF THE KIND OF ACTION: HEATING - COOLING (IF=HC)

This function allows inverting the regulation of the controller: from cooling to heating and viceversa.

9 INSTALLATION AND MOUNTING

Instrument XR03CX shall be mounted on vertical panel, in a 29x111 mm hole, and fixed using the special bracket supplied. The temperature range allowed for correct operation is 0÷60 °C. Avoid places subject to strong vibrations, corrosive gases, excessive dirt or humidity. The same recommendations apply to probes. Let air circulate by the cooling holes.

10 ELECTRICAL CONNECTIONS

The instrument is provided with screw terminal block to connect cables with a cross section up to 2.5 mm². Before connecting cables make sure the power supply complies with the instrument’s requirements. Separate the probe cables from the power supply cables, from the outputs and the power connections. Do not exceed the maximum current allowed on each relay, in case of heavier loads use a suitable external relay.

10.1 PROBES

The probes shall be mounted with the bulb upwards to prevent damages due to casual liquid infiltration. It is recommended to place the thermostat probe away from air streams to correctly measure the average room temperature. Place the defrost termination probe among the evaporator fins in the coldest place, where most ice is formed, far from heaters or from the warmest place during defrost, to prevent premature defrost termination.

11 HOW TO USE THE HOT KEY

11.1 HOW TO PROGRAM THE HOT KEY FROM THE INSTRUMENT (UPLOAD)

1. Program one controller with the front keypad.
2. When the controller is ON, insert the “Hot Key” and press ”key; the “up” message appears followed by a flashing “Ed”
3. Push “SET” key and the “Ed” will stop flashing.
4. Turn OFF the instrument remove the “Hot Key”, then turn it ON again.

NOTE: the “Er” message is displayed for failed programming. In this case push again o key if you want to restart the upload again or remove the “Hot Key” to abort the operation.

11.2 HOW TO PROGRAM AN INSTRUMENT USING HOT KEY (DOWNLOAD)

1. Turn OFF the instrument.
2. Insert a programmed “Hot Key” into the 5 PIN receptacle and then turn the Controller ON.
3. Automatically the parameter list of the “Hot Key” is downloaded into the Controller memory, the “do” message is blinking followed by a flashing “Ed”.
4. After 10 seconds the instrument will restart working with the new parameters.
5. Remove the “Hot Key”.

NOTE: the “Er” message is displayed for failed programming. In this case push again o key if you want to restart the upload again or remove the “Hot Key” to abort the operation.

12 ALARM SIGNALLING

<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1F°</td>
<td>Room probe failure</td>
<td>Compressor output according to “Cy” “on”</td>
</tr>
<tr>
<td>P2F°</td>
<td>Evaporator probe failure</td>
<td>Defrost end is timed</td>
</tr>
<tr>
<td>TA°</td>
<td>Maximum temperature alarm</td>
<td>Outputs unchanged</td>
</tr>
<tr>
<td>LA°</td>
<td>Minimum temperature alarm</td>
<td>Outputs unchanged</td>
</tr>
</tbody>
</table>
NOTE: Model at 120Vac, connect power supply to 6-7 terminals.

13 TECHNICAL DATA

Housing: self extinguishing ABS.
Case: frontal 32x74 mm; depth 60mm;
Mounting: panel mounting in a 71x29mm panel cut-out
Protection: IP20; Frontal protection: IP65
Connections: Screw terminal block ≤ 2.5 mm² wiring.
Power supply: according to the model 230Vac ±10%, 50/60Hz --- 110Vac ±10%, 50/60Hz
Power absorption: 3.5W max.
Display: 2 digits, red LED, 14,2 mm high;
Power absorption: 3.5W max.
Display: 2 digits, red LED, 14.2 mm high; Inputs: Up to 2 NTC.
Digital input: free voltage contact
Relay outputs: compressor SPST 8(3) A, 250Vac; SPST 16(8)A 250Vac or 20(8)A 250Vac fan: SPDT 8(3) A, 250Vac
Data storage: on the non-volatile memory (EEPROM).
Kind of action: 1B. Pollution degree: 2. Software class: II
Rated impulse voltage: 2500V. Overvoltage Category: II
Operating temperature: 0+60 °C; Storage temperature: -25+60 °C.
Relative humidity: 20-85% (no condensing).
Measuring and regulation range: NTC -40+110°C.
Resolution: 0.1 °C or 1 °C or 1 °F (selectable);
Accuracy (ambient temp. 25°C): ±0.1 °C ±1 digit

14 CONNECTIONS

14.1 XR03CX – 20+8A – 110VAC OR 230VAC

15 DEFAULT SETTING VALUES

<table>
<thead>
<tr>
<th>LABEL</th>
<th>DESCRIPTION</th>
<th>RANGE</th>
<th>°C</th>
<th>°F</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>St</td>
<td>Set point</td>
<td>LS+US</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Hc</td>
<td>Differential</td>
<td>0.1 + 25°C/1 + 45°F</td>
<td>4</td>
<td>6</td>
<td>Pr1</td>
</tr>
<tr>
<td>LS</td>
<td>Minimum Set Point</td>
<td>-55°C/SET - 47°F/SET</td>
<td>25</td>
<td>10</td>
<td>Pr2</td>
</tr>
<tr>
<td>US</td>
<td>Maximum Set Point</td>
<td>SET+99°C/SET+99°F</td>
<td>50</td>
<td>50</td>
<td>Pr2</td>
</tr>
<tr>
<td>ot</td>
<td>First probe calibration</td>
<td>-9.9÷9.9°C/17÷17°F</td>
<td>0</td>
<td>0</td>
<td>Pr1</td>
</tr>
<tr>
<td>P2</td>
<td>Second probe presence</td>
<td>n – Y</td>
<td>Y</td>
<td>Y</td>
<td>Pr1</td>
</tr>
<tr>
<td>oE</td>
<td>Second probe calibration</td>
<td>-9.9÷9.9°C/17÷17°F</td>
<td>0</td>
<td>0</td>
<td>Pr2</td>
</tr>
<tr>
<td>od</td>
<td>Outputs activation delay at start up</td>
<td>0 + 99 min</td>
<td>1</td>
<td>1</td>
<td>Pr2</td>
</tr>
<tr>
<td>AC</td>
<td>Anti-short cycle delay</td>
<td>0 + 50 min</td>
<td>5</td>
<td>5</td>
<td>Pr1</td>
</tr>
<tr>
<td>Cy</td>
<td>Compressor ON time faulty probe</td>
<td>0 + 99 min</td>
<td>15</td>
<td>15</td>
<td>Pr2</td>
</tr>
<tr>
<td>Cn</td>
<td>Compressor OFF time faulty probe</td>
<td>0 + 99 min</td>
<td>15</td>
<td>15</td>
<td>Pr2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>DESCRIPTION</th>
<th>RANGE</th>
<th>°C</th>
<th>°F</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>Measurement units</td>
<td>°C – °F</td>
<td>°C</td>
<td>°F</td>
<td>Pr2</td>
</tr>
<tr>
<td>rE</td>
<td>Resolution (only for °C)</td>
<td>dE – in</td>
<td>in</td>
<td>in</td>
<td>Pr1</td>
</tr>
<tr>
<td>Ld</td>
<td>Default Display</td>
<td>P1 – P2</td>
<td>SP</td>
<td>P1</td>
<td>P1</td>
</tr>
<tr>
<td>dy</td>
<td>Display delay</td>
<td>0 + 15 min</td>
<td>1</td>
<td>1</td>
<td>Pr2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEFROST</th>
<th>DESCRIPTION</th>
<th>RANGE</th>
<th>°C</th>
<th>°F</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>dE</td>
<td>Defrost termination temperature</td>
<td>-55÷50°C/37÷99°F</td>
<td>5</td>
<td>41</td>
<td>Pr1</td>
</tr>
<tr>
<td>do</td>
<td>Set for defrost relay activation with tEnd</td>
<td>-55÷95°C/37÷99°F</td>
<td>0</td>
<td>32</td>
<td>Pr1</td>
</tr>
<tr>
<td>id</td>
<td>Interval between defrost cycles</td>
<td>0 + 99 hours</td>
<td>6</td>
<td>6</td>
<td>Pr1</td>
</tr>
<tr>
<td>Md</td>
<td>Maximum length for defrost</td>
<td>0 + 99 hours</td>
<td>30</td>
<td>30</td>
<td>Pr1</td>
</tr>
<tr>
<td>dF</td>
<td>Display during defrost</td>
<td>0 – SP – dF</td>
<td>0</td>
<td>0</td>
<td>Pr2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FANS</th>
<th>DESCRIPTION</th>
<th>RANGE</th>
<th>°C</th>
<th>°F</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>Fans operating mode (Set=do)</td>
<td>on – on – cY – oY</td>
<td>Cy</td>
<td>Cy</td>
<td>Pr1</td>
</tr>
<tr>
<td>Fd</td>
<td>Fans delay after defrost</td>
<td>0 + 99 min</td>
<td>2</td>
<td>2</td>
<td>Pr1</td>
</tr>
<tr>
<td>FS</td>
<td>Fans stop temperature</td>
<td>-55÷50°C/67÷99°F</td>
<td>5</td>
<td>41</td>
<td>Pr2</td>
</tr>
<tr>
<td>Fn</td>
<td>Fan on time with compressor off</td>
<td>0+15 (min.)</td>
<td>1</td>
<td>1</td>
<td>Pr1</td>
</tr>
<tr>
<td>FF</td>
<td>Fan off time with compressor off</td>
<td>0+15 (min.)</td>
<td>3</td>
<td>3</td>
<td>Pr1</td>
</tr>
</tbody>
</table>

ALARMS

<table>
<thead>
<tr>
<th>LABEL</th>
<th>DESCRIPTION</th>
<th>RANGE</th>
<th>°C</th>
<th>°F</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Maximum temperature alarm</td>
<td>ALL+99 °C / ALL+99°F</td>
<td>99</td>
<td>99</td>
<td>Pr1</td>
</tr>
<tr>
<td>AL</td>
<td>Minimum temperature alarm</td>
<td>-55°C+ALU÷67°F+ALU</td>
<td>-55</td>
<td>-75</td>
<td>Pr1</td>
</tr>
<tr>
<td>Ad</td>
<td>Temperature alarm delay</td>
<td>0 + 99 min</td>
<td>99</td>
<td>99</td>
<td>Pr2</td>
</tr>
<tr>
<td>dA</td>
<td>Exclusion of temperature alarm at startup</td>
<td>0 + 99 min</td>
<td>99</td>
<td>99</td>
<td>Pr2</td>
</tr>
</tbody>
</table>

DIGITAL INPUT

<table>
<thead>
<tr>
<th>LABEL</th>
<th>DESCRIPTION</th>
<th>RANGE</th>
<th>°C</th>
<th>°F</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip</td>
<td>Digital input polarity</td>
<td>CL – oP</td>
<td>CL</td>
<td>CL</td>
<td>Pr1</td>
</tr>
<tr>
<td>IF</td>
<td>Digital input configuration</td>
<td>EA – dA – do – dF – Au – Hc</td>
<td>EL</td>
<td>EL</td>
<td>Pr1</td>
</tr>
<tr>
<td>di</td>
<td>Digital input delay</td>
<td>0 + 99 min</td>
<td>5</td>
<td>5</td>
<td>Pr1</td>
</tr>
<tr>
<td>dC</td>
<td>Compressor and fan status when open door</td>
<td>no /F1 /cP / Fc</td>
<td>Fn</td>
<td>Fn</td>
<td>Pr2</td>
</tr>
<tr>
<td>rd</td>
<td>Regulation with door open</td>
<td>n – Y</td>
<td>Y</td>
<td>Y</td>
<td>Pr2</td>
</tr>
</tbody>
</table>

FOOTNOTES

1. Mess. Causes:
 - EA: External alarm
 - CA: Serious external alarm
 - IA: Door Open

2. 12.1 ALARM RECOVERY
 Probe alarms P1 and P2 start some seconds after the fault in the related probe; they automatically stop some seconds after the alarm restarts normal operation. Check connections before replacing the probe. Temperature alarms HA and LA automatically stop as soon as the temperature returns to normal values.
 Alarms “EA” and “CA” (with F=0L) appear as soon as the digital input is disabled.

3. NOTE: Model at 120Vac, connect power supply to 6-7 terminals.